49 research outputs found

    Collaborative working to overcome barriers to active transport: Learning from a living lab

    Get PDF
    Christine teaches sustainable transport to Resource and Environmental Planning students and supervises postgraduate research on a range of sustainability topics related to transport. As a local government specialist, she is particularly interested in planning for and implementation of sustainability by local government and grasping the nettle of integration of land-use and transport planning. This has stimulated her interest in fostering a new approach to collaborative working by council planners and university researchers. ‘Co-production’ of research has been the focus of the Massey University Living Lab in which she has been involved for several years with Palmerston North City Council planners.fals

    Collaborative working to overcome barriers to active transport: Learning from a living lab

    Get PDF
    Innovative research on barriers to active transport in Palmerston North set out to “disrupt” conventional approaches to research in a number of ways. First, council managers and planners worked collaboratively with university researchers to determine the focus of research and the approach that was taken. Second, the two organisations (council and university) chose to focus on their own staff in order to be able to demonstrate leadership in the community in addressing the challenge of promoting active transport. An online questionnaire was developed and administered to staff of both organisations. Third, recognising the need to have a long-term approach, both organisations have continued to collaborate in carrying out follow-up research and implementing the findings. This paper outlines the background to the research that was initiated in 2014 and discusses the importance of the long-term relationships between planners, policy advisors and active transport researchers. It shares insights for local government, district health boards and other key agencies about working collaboratively to co-create research about and implement solutions to increase participation in active transport

    Barriers to active transport in Palmerston North

    Get PDF
    falsePalmerston North, New Zealan

    Four patients with a history of acute exacerbations of COPD: implementing the CHEST/Canadian Thoracic Society guidelines for preventing exacerbations

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/ by/4.0

    A mean field model for movement induced changes in the beta rhythm

    Get PDF
    In electrophysiological recordings of the brain, the transition from high amplitude to low amplitude signals are most likely caused by a change in the synchrony of underlying neuronal population firing patterns. Classic examples of such modulations are the strong stimulus-related oscillatory phenomena known as the movement related beta decrease (MRBD) and post-movement beta rebound (PMBR). A sharp decrease in neural oscillatory power is observed during movement (MRBD) followed by an increase above baseline on movement cessation (PMBR). MRBD and PMBR represent important neuroscientific phenomena which have been shown to have clinical relevance. Here, we present a parsimonious model for the dynamics of synchrony within a synaptically coupled spiking network that is able to replicate a human MEG power spectrogram showing the evolution from MRBD to PMBR. Importantly, the high-dimensional spiking model has an exact mean field description in terms of four ordinary differential equations that allows considerable insight to be obtained into the cause of the experimentally observed time-lag from movement termination to the onset of PMBR (~ 0.5 s), as well as the subsequent long duration of PMBR (~ 1-10 s). Our model represents the first to predict these commonly observed and robust phenomena and represents a key step in their understanding, in health and disease

    Strategies for the Use of Fallback Foods in Apes

    Get PDF
    Researchers have suggested that fallback foods (FBFs) shape primate food processing adaptations, whereas preferred foods drive harvesting adaptations, and that the dietary importance of FBFs is central in determining the expression of a variety of traits. We examine these hypotheses in extant apes. First, we compare the nature and dietary importance of FBFs used by each taxon. FBF importance appears greatest in gorillas, followed by chimpanzees and siamangs, and least in orangutans and gibbons (bonobos are difficult to place). Next, we compare 20 traits among taxa to assess whether the relative expression of traits expected for consumption of FBFs matches their observed dietary importance. Trait manifestation generally conforms to predictions based on dietary importance of FBFs. However, some departures from predictions exist, particularly for orang-utans, which express relatively more food harvesting and processing traits predicted for consuming large amounts of FBFs than expected based on observed dietary importance. This is probably due to the chemical, mechanical, and phenological properties of the apes’ main FBFs, in particular high importance of figs for chimpanzees and hylobatids, compared to use of bark and leaves—plus figs in at least some Sumatran populations—by orang-utans. This may have permitted more specialized harvesting adaptations in chimpanzees and hylobatids, and required enhanced processing adaptations in orang-utans. Possible intercontinental differences in the availability and quality of preferred and FBFs may also be important. Our analysis supports previous hypotheses suggesting a critical influence of the dietary importance and quality of FBFs on ape ecology and, consequently, evolution

    The evolution of lung cancer and impact of subclonal selection in TRACERx

    Get PDF
    Lung cancer is the leading cause of cancer-associated mortality worldwide. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource
    corecore